If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-95x+75=0
a = 16; b = -95; c = +75;
Δ = b2-4ac
Δ = -952-4·16·75
Δ = 4225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4225}=65$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-95)-65}{2*16}=\frac{30}{32} =15/16 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-95)+65}{2*16}=\frac{160}{32} =5 $
| 9u-8u=7 | | z=1/5+3/4 | | 14,91+(−x)=−345. | | 16=(x-4)+(x-4)+x | | (x+80÷2)=44 | | 3x+8-2x=-3x-24 | | x+80/2=44 | | (x+80/2)=44 | | x/3-4=2x | | 5t-3t+1=-2t-5 | | (x+90/5)=34 | | 9j-4j=5 | | 500=x+50 | | (x+90/5)+34=180 | | 4m+2=7-5m | | (x+90/5)+34=360 | | 4x+6-x=-2x+21 | | 11x+17x=-6 | | y=4(4)-1 | | 240+20x=300 | | 3x+27=5x-12 | | 4x^2+16=65 | | 9y+11+4y+8+146=180 | | y=-3(0)+-4 | | y=-3(2)+-4 | | y=-3(-2)+-4 | | 3x(2x-4)=16 | | 7=9a=23a | | 10x+10=50+5x | | -1(x-2)=-4 | | 11x+(-17)=180 | | (24y-5)+(7y-7)=360 |